The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress.

نویسندگان

  • Fang Wei Yu
  • Xiao Fang Zhu
  • Guang Jie Li
  • Herbert J Kronzucker
  • Wei Ming Shi
چکیده

Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1 Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress1

Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 reveale...

متن کامل

Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress.

Ammonium (NH(4)(+)) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH(4)(+) toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH(4)(+). Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1...

متن کامل

Molecular components of stress-responsive plastid retrograde signaling networks and their involvement in ammonium stress.

Plastid retrograde signaling (chloroplast to nucleus) has been proposed to play an important role in the acclimation of plant function to environmental stress. Although several pathways and molecular components, as well as some signals, have been identified in recent years, our understanding of the communication between plastid and nucleus under stress remains fragmentary. This mini-review summ...

متن کامل

Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii.

Cell survival depends on the cell's ability to acclimate to phosphorus (P) limitation. We studied the chloroplast ribonuclease polynucleotide phosphorylase (PNPase), which consumes and generates phosphate, by comparing wild-type Chlamydomonas reinhardtii cells with strains with reduced PNPase expression. In the wild type, chloroplast RNA (cpRNA) accumulates under P limitation, correlating with ...

متن کامل

A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses.

The uptake and distribution of Pi in plants requires multiple Pi transport systems that must function in concert to maintain homeostasis throughout growth and development. The Pi transporter PHT2;1 of Arabidopsis shares similarity with members of the Pi transporter family, which includes Na(+)/Pi symporters of fungal and animal origin and H(+)/Pi symporters of bacterial origin. Sequence compari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 2016